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Abstract-This paper describes the behavior of a simple pendulum with support in a steady and
rather slow circular motion in a vertical plane. The governing equation of this model is nonlinear,
and its motion is about the direction ofgravity. In the equation ofmotion, there are three parameters,
which are related to the radius and angular velocity of the circular motion, the length of the
pendulum and the damping constant. For some combinations of these parameters, this model is
found to have chaotic motion by numerical integration.

This paper not only draws the time series and Poincare map to show the characteristics of
regular and chaotic motions, but also explores the feasibility of using the amplitude probability
distribution by numerical method to diagnose whether the motion is chaotic. The effect of geometry
and damping constant on the motion of the system is investigated. Furthermore, whether the
Poincare map and amplitude probability distribution depend sensitively on the initial conditions is
also studied.

l. INTRODUCTION

A unifonn physical pendulum whose support is in a steady and fast circular motion in a
vertical plane was first investigated by Panayotidi and DiMaggio (1988). They dealt with the
classical nonlinear dynamics regarding periodic motions. Afterwards, Yeh and DiMaggio
(1991) probed both the periodic motion and chaotic motion of that model with and without
damping. The chaotic motion was found to exist. This paper continues to work on a similar
model, which is a simple pendulum whose support is in a steady and very slow circular
motion. Because this model describes the behaviors of systems like the ferris wheel, the
angle of oscillation is measured from the vertical line, instead of the radial line.

The purpose of this paper is to find the routes to chaos for systems with and without
damping, to exhibit the characteristics of the chaotic motion found on the Poincare map
and the amplitude probability distribution, and to explore the effects of damping and the
geometry of the system on the motion.

This paper is arranged as follows. Section 2 derives the equation of motion. The
subsequent section describes how the Poincare map and amplitude probability distribution
are obtained. Section 4 introduces the Lyapunov exponents and fractal dimension. Numeri­
cal methods and results are given in Section 5. The conclusion is in Section 6 with a few
remarks.

2. EQUATION OF MOTION

This paper considers a system like the ferris wheel with only one carriage. It can be
modeled as in Fig. 1. Support A is in steady and very slow circular motion with a radius
of R and angular velocity of O. M is the mass of the simple pendulum and L is its length.
Suppose that the mass moment of inertia of the driving wheel F about the axis passing
through the fixed point 0 is 1 0 and the damping of the simple pendulum is Cpo Let r be the
position vector of B with respect to the fixed reference point O. The kinetic energy of the
system is

T= !Mf'f+!Ion2

= !M[R2n2+L2<j)2 +2RnL<j) cos (4) - Ot)] +!10 0 2
,
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Fig. I. Simple pendulum with support in low-speed circular motion.

where;' = (dr/dt). Assume that the horizontal line passing through the point 0 in Fig. 1 is
the datum for the potential energy. Accordingly, the potential energy of the system is

v= -Mg(Rcosnt+Lcos<l».

Substituting eqns (1) and (2) into Lagrange's equation leads to the equation of motion

Let r = nt. Equation (3) can be changed to

m/l Cp ml R. (m ) 9 . m 0
w + ML 2n w + Ism w-r + n 2L Slow = ,

where

(2)

(3)

(4)

d<l>
<1>1 = dr'

For simplification, eqn (4) is written as

<1>/1 +C<I>I +Esin <I> = D sin (r - <1»,

where

Parameters C, D and E are all dimensionless.

3. POINCARE MAPS AND AMPLITUDE PROBABILITY DISTRIBUTION

(5)

3.1. Poincare maps
If a nonautonomous system, whose governing equation is <1>/1 = f(<I>/, <1>, r) has a very

long period or is nonperiodic, the projection of its trajectory onto the phase plane of (<1>/,
<1» must be very complicated, from which it's very difficult to get information. In chaotic
dynamics, the Poincare map is often used to simplify the picture on the phase plane. If the
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period of the driving function in the governing function is T, then the rule for the Poincare
map is usually to sample the points at times when rn = nT+ro ' where n is a non-negative
integer. Depending on the types of motion, the Poincare map has the following patterns:

(I) a set of q points, if <l>(r +sr) = <l>(r) in which s is a rational number q/p;
(2) a closed curve (or closed curves), if <l>(r +sr) = <l>(r) in which s is irrational;
(3) fractal collection of points, if the motion can't be expressed in the above two forms.

3.2. Amplitude probability distribution
This paper uses a direct method to find the amplitude probability distribution. First,

divide the interval between the largest and smallest amplitudes of the motion equally into
as many subintervals as possible. Secondly, find which subintervals each iteration belongs
to from the result of the numerical integration. Finally, divide the number of iterations in
each subinterval by the total number of iterations. The more iterations the numerical
integration has, the more accurate the probability distribution is.

If the motion of the system is periodic, some amplitudes will appear repeatedly and
fall into the same subinterval as the numerical integration proceeds, but some subintervals
never catch any iterations. Therefore, its amplitude probability distribution is discrete. If
the motion is quasi-periodic or chaotic, every subinterval will catch iterations, and its
amplitude probability distribution is continuous.

4. LYAPUNOV EXPONENTS AND FRACTAL DIMENSION

Suppose that there is a small circle of radius d(rn ) corresponding to different initial
conditions at time rn' At a later time r n+A" these set of points evolve into an ellipse with
major principal axis d l (rn+ I) and minor principal axis d2(rn+ 1), as shown in Fig. 2. The
lengths of these two axes are

(6)

(7)

where Aln and A2n are Lyapunov exponents to measure the variation of these two axes
during the time interval AT' The Lyapunov exponents AI and A2 are obtained by averaging
the Lyapunov exponents found at every interval AT throughout the whole time history. That
is

(8)

and Al > A2' The system is defined as chaotic if AI > 0, quasi-periodic if AI = 0 or periodic
if AI < O.

Q
r.

Fig. 2. Evolution of a small circle into an ellipse.
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For a damped system, the points on the Poincare map are not distributed uniformly,
so its dimension is called a fractal dimension. There are a number of means to measure the
dimension of a set of points, such as capacity dimension, information dimension, pointwise
dimension, Lyapunov dimension, etc., discussed by Farmer et al. (1983) and Frederickson
et al. (1983). Lyapunov dimension is chosen to find the dimension of a set of points in this
paper. Its formula is

(9)

Let the area of the initial circle in Fig. 2 be An and the evolved ellipse be An+ l' Then

( 10)

5. NUMERICAL METHODS AND RESULTS

5.1. Numerical methods
In this paper, the Runge-Kutta-Fehlberg method from Gerald and Wheatley (1984)

is used to find solutions to the set of coupled ordinary differential equations. To find <I> and
<1>', eqn (5) is first changed to

(11 )

(12)

where <I> I = <1>. Because the period of <I> is 211:, <I> is restricted between -11: and 11: for
simplification. To find the exponential growth of the principal axes in Fig. 2, eqns (11) and
(12) are linearized to get two sets of variational equations. The first set for one of the two
principal axes is

(13)

(14)

The second set for the other principal axes is

(15)

(16)

Equations (11)~(16) are then solved simultaneously. The unit vectors OP of (a l (0), a2(0»
and OQ of ({31 (0), {32(0» in Fig. 3 are perpendicular to each other. At 'h 0 --> 0', P --> P'
and Q --> Q', OP' and OQ' are not perpendicular to each other any more, Therefore, OP'
and OQ", instead ofOQ', are chosen'to measure the growth of the two principal axes. OQ"
is the component of OQ' in the direction perpendicular to OP'. Since OP' is free to
follow the fast growth direction, substituting OP and OP' into eqn (6) leads to Ie In' while
substituting OQ and OQ" into eqn (7) leads to A2n' Before going to the next mapping, OP'
and OQ" are normalized in order to make computation simple. According to eqn (8), )'1

and A2 are finally found by averaging all the AlnS and )'2nS.

5.2. Numerical results
The initial value of (<1>(0), <1>'(0» is (0.0873,0.0) in all calculations unless specified,

5.2.1. C = 0.0. The solutions to eqns (11) and (12) are obtained for C = 0.0,
1 ~ D ~ 10 and 10 ~ E ~ 300. The increment is 1 for D and 10 for E. When E? 20, the
motion is quasi-periodic. The Poincare map for D = 1 and E = 10 consists of two inter-
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4>l
Fig. 3. Trajectory of the initial point 0 and the variation of the length of OP and OQ.
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secting closed curves, as shown in Fig. 4(a). These two curves are generated by a single
trajectory which jumps successively from one to the other. When D increases, they move
further apart, as illustrated in Figs 4(b) and (c) which are for D = 2 and D = 3, respectively.
In order to discover the route to chaos, the increment of D is decreased to 0.01 and E is
fixed at 10. It is found that the system is still in quasi-periodic motion until D reaches 3.92.
The time series and Poincare map for D = 3.92 and E = 10 are shown in Figs 5(a) and (b),
respectively, and Fig. 5(c) is its amplitude probability distribution. When D = 3.93, the
motion becomes chaotic. Therefore, quasi-periodic route is the model for the system without
damping to become chaotic. Figures 6(a) and (b) are the time series and Poincare map,
respectively, for D = 4.0 and E = 10.0. Since the system is undamped, no strange attractor
appears on the Poincare map. If the initial conditions are (0.1, 0.0), an identical Poincare
map is obtained, as shown in Fig. 7. If enough points are sampled, the points on the
Poincare map should appear to be uniformally distributed. Figure 8(a) is the amplitude
probability distribution for D = 4.0 and E = 10, which is continuous as well. If the initial
conditions are (0.1, 0.0), a different shape of amplitude probability distribution is found,
as shown in Fig. 8(b). Hence, the amplitude probability distribution of chaotic motion is
very sensitive to the initial conditions, but the Poincare map is not. Although the amplitude
probability distribution for both quasi-periodic and chaotic motion is continuous, there are
still differences between them. The range of amplitude is always -1t::;;; <D ::;;; 1t for chaotic
motion, while it is smaller for quasi-periodic motion, as illustrated in Figs 5(c) and 8(a).

The Lyapunov exponents A{ and A2, Al +A2' and fractal dimension d l for E = 10 and
D = 3.93, 5.0, 8.0 and 10.0 are listed in Table 1, from which it is found that AI = - 22 ,

d l = 2 and Al becomes larger when D increases. According to eqn (10), the area of the
circle of initial conditions remains unchanged because Al + A2 = O.

5.2.2. C = 0.1. The solutions to eqns (11) and (12) are obtained for C = 0.1,
I ::;;; D ::;;; 10 and 10 ::;;; E::;;; 300. The increment is 1 for D and 10 for E. When E = 10 and

Table 1. Lyapunov exponents AI and A2 , AI+A 2 and AI for C = 0.0, E 10 and D = 3.93,
5.0, 8.0 and 10.0

C D E AI A2 AI+A2 d l

0.0 3.93 10.0 0.2122 -0.2122 0.0 2.0
0.0 5.0 10.0 0.2813 -0.2813 0.0 2.0
0.0 8.0 10.0 0.3484 -0.3484 0.0 2.0
0.0 10.0 10.0 0.3794 -0.3794 0.0 2.0
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Fig. 4. Poincare maps for initial conditions (0.0873, 0.0) and (a) C = 0.0, D = 1 and E = W, (b)
C ~ 0.0, D ~ 2 and E = 10, and (c) C - 0_0, D = 3 and E = 10.



Chaotic motion of a pendulum

(a)

2.0

.eo
~
.; 0.0
p.
s
~

-2.0

-4.0
0 100 200 300,.

(b)

10.0

5.0

~ 0.0 0
0

-5.0

-10.0
-4.0 -2.0 0.0 2.0 4.0

<I>

(c)

3.0

0 2.0
0-><
..ci
0....
Il.. 1.0

oLu..J...L.L.J...L.L.J...L.L..u..lJ...l-U..l-U..l-U..J...J...J.lW-J...l..J...J..J...J...J...J..J...L-J..J

-4.0 -2.0 0 2.0 4.0

Amplitude <I>

Fig. 5. (a) Time history, (b) Poincare map, and (c) amplitude probability distribution for C = 0.0,
D = 3.92, E = 10 and initial conditions (0.0873, 0.0).
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Fig. 6. (a) Time history and (b) Poincare map for C = 0.0, D = 4, E = 10 and initial conditions
. (0.0873, 0.0).
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Fig. 7. Poincare map for C = 0.0, D = 4, E = 10 and initial conditions (0.1, 0.0).
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Fig. 8. Amplitude probability distribution for C = 0.0, D = 4, E = 10, and initial conditions (a)
(0.0873, 0.0), and (b) (0.1,0.0).

I ~ D ~ 6, the motion is periodic and its Poincare map consists of two points. Because the
sample interval on the Poincare map is n, the period of the motion is 2n. Figures 9(a), (b)
and (c) show the Poincare maps for E = 10 and D = 2, 4 and 6, respectively. From these
maps, it can be seen that as D increases, the distance between these two points becomes
larger and larger. This phenomenon is similar to the bifurcation diagram for the logistic
equation by Jensen (1987). In order to understand how the motion becomes chaotic, the
increment of D is decreased to 0.01 with E fixed at 10. As D increases above 6, the system
bifurcates to periodic motion with twice the period of the previous oscillation as shown in
Figs 10(a), (b) and (c) which are for D = 6.1, 6.3 and 6.31, respectively. The interval
between the bifurcation points becomes smaller as the parameter D increases. When D
reaches 6.33, the motion becomes chaotic. Hence the system becomes chaotic by the route
of period-doubling. The amplitude probability distribution for periodic motion is discrete.
Figure II (a) is the time series and Fig. II (b) is the amplitude probability distribution after
transition for D = 6 and E = 10. Figures 12(a) and 12(b) are the time series and Poincare
map, respectively, for D = 6.33 and E = 10. If the initial conditions are (0.1, 0.0), an
identical Poincare map is obtained, as shown in Fig. 13. Fig. 14(a) is the amplitude
probability distribution, for D = 6.33 and E = 10. Its range of amplitude is - n-n. If the
initial conditions are (0.1,0.0), a different shape ofamplitude probability is found, as shown
in Fig. 14(b). Therefore, the amplitude probability distribution of chaotic motion of the
damped system is also very sensitive to the initial conditions, but the Poincare map is not.
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Fig. 9. Poincare maps after transition for C = 0.1, E = 10, initial conditions (0.0873, 0.0) and (a)
D = 2, (b) D 4, and (c) D = 6.
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Fig. 10. Poincare maps for C = 0.1, E = 10, initial conditions (0.0873, 0.0) and (a) D = 6.1,
(b) D = 6.3, and (c) D = 6.31.
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Fig. II. (a) Time history and (b) amplitude probability distribution after transition for C = 0.1,
D = 6, E'" 10 and initial conditions (0.0873,0.0).

Table 2 lists the Lyapunov exponents ).1, )'2' A1+ ).2 and fractal dimension d1for E = 10
and D = 6.33, 8.0 and 10.0. Since 2,+A 2 = -1.4427C, according to Yeh and DiMaggio
(1991), A\ +2 2 = -0.1443. Table 2 shows Al and d 1 become larger when D increases.
Figures 12(b) and 15, which are the Poincare maps for C = 0.1, D 10 and E = 10, show
that the larger D is, the bigger d, is. Since the system has damping, d l is between 1 and 2.
When E> 10, the system becomes periodic again.

If C changes from 0.1 to 10 with an increment of 0.1, chaos only exists at E = 10 but
begins to happen at larger D when C is larger. For example, if C = 0.5, chaos begins to
happen at D = 9.

5.2.3. D = 10. Let D be fixed at 10. That is, the geometry is fixed. Change C from 0
to 1.0 with an increment of 0.1 and E from 10 to 300 with an increment of 10. It is found

Table 2. Lyapunov exponents At and A" A, +Az and At for C '" 0.1, E '" 10 and D '" 6.33, 8.0
and 10.0

c

0.1
0.1
0.1

D

6.33
8.0

10.0

E

10.0
10.0
10.0

0.1053
0.1988
0.2495

-0.2496
-0.3431
-0.3938

1:1 +;~2 ill

-0.1443 1.421
-0.1443 1.579
-0.1443 1.633
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Fig. 12. (a) Time history and (b) Poincare map for C = 0.1, D = 6.33, E = 10 and initial conditions

(0.0873, 0.0).
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Fig. 13. Poincare map for C = 0.1, D = 6.33, E = 10 and initial conditions (0.1, 0.0).
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Fig. 14. Amplitude probability distribution for C = 0.1, D = 6.33, E = 10 and initial conditions
(a) (0.0873,0.0), and (b) (0.1,0.0).

that chaos happens only at E = 10. The Lyapunov exponents AI> ..1,2, A} +..1,2 and d l for
E = 10 and C = 0.0, 0.2, 0.4, 0.6 and 0.8 are shown in Table 3. It is observed that when C
increases, AI +..1,2 becomes more negative and d l becomes smaller. Since AI +..1,2 is negative,
the area of the circle in Fig. 2 decreases as time increases. The effect of the damping on the
fractal dimension can be seen in Figs 16(a), (b) and (c), which are the Poincare maps for
D = 10, E = 10 and C = 0.4, 0.6 and 0.8, respectively.
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o
o
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Fig. 15. Poincare map for C = 0.1, D = 10, E = 10 and initial conditions (0.0873,0.0).
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Fig. 16. Poincare maps for D = 10, E = 10, initial conditions (0.0873, 0.0) and (a) C = 0.4,
(b) C = 0.6, and (c) C = 0.8.
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Table 3. Lyapunov exponents A, and A" )., +A, and Aj for D = E = 10 and C = 0.0, 0.2, 0.4,
0.6, and 0.8

C D E A, iC2 i.,+A., d,

0.0 10.0 10.0 0.3794 ~0.3794 0.0 2
0.2 10.0 10.0 0.2397 -0.5283 -0.2886 1.454
0.4 10.0 10.0 0.1827 -0.7598 -0.5771 1.241
0.6 10.0 10.0 0.1388 -1.0044 -0.8656 1.138
0.8 10.0 10.0 0.1193 -1.2734 -1.1541 1.094

6. CONCLUSIONS

A few remarks can be made from the above discussions.
(l) Chaos happens when the parameter E, which is related to the angular velocity of

circular motion and the length of the pendulum, is near or equal to 10.
(2) The system without damping becomes chaotic by a quasi-periodic route. When

the system is in quasi-periodic motion, its Poincare map is composed of two closed curves,
which move further apart when the parameter D, the ratio of the radius of the circular
motion to the length of the pendulum, increases. When the system is in chaotic motion, the
points on the Poincare map are distributed uniformally and its dimension is two. But there
is no strange attractor on the map. For the chaotic motion, the Lyapunov exponent A. I is
equal to - A. 2 and becomes larger as D increases. Different initial conditions could get the
same Poincare map for chaotic motions.

(3) The system with damping becomes chaotic by a periodic-doubling route. The
interval between the bifurcation points becomes smaller as the parameter D increases. When
the system is in periodic motion, the Poincare map consists of only a finite set of points.
When the system is in chaotic motion, the points on the Poincare map are not distributed
uniformally and form a strange attractor with two similar patterns of different size. The
dimension of the strange attractor is between one and two, and it becomes larger when D
increases. Different initial conditions could also get the same Poincare map for chaotic
motions.

(4) The amplitude probability distribution, which is found to be feasible for predicting
chaos, is continuous for both quasi-periodic and chaotic motions. The range of the ampli­
tude for chaotic motion is from - n to n, but smaller for quasi-periodic motion. The
amplitude probability distribution for periodic motion is discrete. Therefore, the amplitude
probability distribution can also be used as a method to diagnose whether the motion is
regular or chaotic. For chaotic motion, the amplitude probability distribution is found to
be very sensitive to the initial conditions.

(5) When the parameter E is fixed, chaos happens at larger D if the damping increases.
(6) With the angular velocity of the circular motion and the geometry being fixed, the

fractal dimension of the strange attractor becomes smaller when the damping Increases.

If the behavior of a system can be predicted, then the designed device will be safer and
more reliable. Because of the unpredictability and sensitivity to changes in initial conditions
of chaotic motion, engineers had better avoid using the parameters in the equation of
motion which will lead to chaos. Therefore, before establishing a physical system, numerical
simulations to see whether the system will be chaotic are suggested. It is also important to
indicate that damping could help suppress the occurrence of chaos.
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